Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

I. Darren Grice, ${ }^{\text {a }}$ Ian D. Jenkins, ${ }^{\text {b }}$ W. Ken Busfield, ${ }^{\text {c }}$ Karl A. Byriel ${ }^{\text {d }}$ and Colin H. L. Kennard ${ }^{\text {e* }}$

${ }^{\text {a }}$ Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia,
${ }^{\mathbf{b}}$ Natural Product Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia, ${ }^{\text {c }}$ School of Science, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia, ${ }^{\text {d }}$ Centre for Drug Design and Development, The University of Queensland, Brisbane, Queensland, 4072, Australia, and ${ }^{\mathrm{e}}$ Chemistry Department, School of Molecular and Microbial Sciences, The University of Queensland,
Brisbane, Queensland, 4072, Australia
Correspondence e-mail: C.Kennard@uq.edu.au

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.039$
$w R$ factor $=0.142$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

tert-Butyl diphenylphosphinate

Molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$, pack simply in the orthorhombic space group $P b c a$, the dominant molecular feature being a tetrahedral P atom attached to two phenyl rings, a phosphate O atom and a tertiary butyloxy group.

Comment

The title compound, (I), was part of an investigation using the radical scavenger 1,1,3,3-tetramethyl-2,3-dihydro- 1 H -isoindol-2-yloxyl to study the reaction of phosphorus-centred radicals with alkenes and alkynes (Busfield et al., 1995, Bottle et al., 1994).

(3)

There is an intramolecular short distance between H26 and O4 of $2.46 \AA$, with an angle of 106° for $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 4$. Reaction of the title compound with polyether ligands has been reported by Albanese et al. (2001).

Experimental

The title compound was obtained in 16% yield from the reaction of diphenylphosphine (100 mg), di-tert-butyl peroxyoxalate (DTBP) $(58 \mathrm{mg})$ and benzene $(2.5 \mathrm{ml})$ (solvent) in the presence of the radi-

Figure 1
The molecular structure of the title compound, (3), with displacement ellipsoids drawn at the 50% probability level.

Received 19 October 2004
Accepted 12 November 2004 Online 20 November 2004
cal scavenger 1,1,3,3-tetramethyl-2,3-dihydro-1 H -isoindol-2-yloxyl (103 mg), along with five other phosphorus-containing compounds. Reaction mixtures were degassed using repeated freezing/evacuating/ thawing cycles on a high vacuum line, then sealed under vacuum in glass and heated for 10 half lives of the initiator, DTBP (68 minutes at 333 K). The reaction mixture was then separated by HPLC (Whatman Partisil 10-ODS-3 $500 \times 10 \mathrm{~mm}$ C18) using an isocratic 80:20 methanol/water, $4.0 \mathrm{ml} / \mathrm{min}$ method.

The isolated phosphorus-containing reaction products were eluted from the reversed-phase HPLC column in the following order.
(1) Diphenylphosphinic acid (0.4%), identical to an authentic sample by HPLC, m.p. 466-468 K. (Edmundson, 1986).
(2) Diphenylphosphine oxide (4.8\%), identical to an authentic sample by HPLC and NMR.
(3) tert-Butyl diphenylphosphinate (16%). ${ }^{1} \mathrm{H}$ NMR $\delta(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.51, s, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} ; 7.42, m, 6 \mathrm{H}, 7.79, m, 4 \mathrm{H}$, aromatic $\mathrm{H} .{ }^{13} \mathrm{C}$ NMR $\delta\left(62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.8,{ }^{3} J_{\mathrm{P}, \mathrm{C}} 18.5,\left(\mathrm{CH}_{3}\right)_{3} ; 83.4, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$; $128.2,{ }^{3} J_{\mathrm{P}, \mathrm{C}} 13.2$, meta $\mathrm{C} ; 129.1$, para $\mathrm{C} ; 131.3,{ }^{2} J_{\mathrm{P}, \mathrm{C}} 10.7$, ortho $\mathrm{C} ; 134.8$, $J_{\mathrm{P}, \mathrm{C}} 138.5$, ipso $\mathrm{C} .{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 9.94. Structural confirmation by X-ray structural analysis.
(4) 2-(Diphenylphosphinyl)-1,1,3,3-tetramethyl-2,3-dihydro-1 H isoindole (6.3%), white solid, m.p. 458-461 K (Found: C, 77.3; H, 6.5; $\mathrm{N}, 3.6 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOP}$ requires $\left.\mathrm{C}, 76.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.7 \%\right) .{ }^{1} \mathrm{H}$ NMR δ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.56, br s, 12H, 4CH3 3 ; 7.04, $m, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7 ; 7.23, m$, 2H, H5, H6; 7.44, $m, 6 \mathrm{H}, 7.83, m, 4 \mathrm{H}$, Phenyl; ${ }^{13} \mathrm{C}$ NMR $\delta(62.8 \mathrm{MHz}$, CDCl_{3}) 32.2 , br $s, 4 \times$ ring $\mathrm{CH}_{3} ; 68.6, \mathrm{C} 1, \mathrm{C} 3 ; 120.9, \mathrm{C} 4, \mathrm{C} 7 ; 127.5, \mathrm{C} 5$, C6; 127.8, $d,{ }^{2} J_{\mathrm{P}, \mathrm{C}} 15.7$, , ortho C; 131.5, s, para C; 133.4, ${ }^{3} J_{\mathrm{P}, \mathrm{C}} 10.7, d$, meta C ; 133.7, ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}} 138.1$, d, ipso C; 145.9, C3a, C7a. ${ }^{31} \mathrm{P}$ NMR $\delta\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.70$.
(5) 2-(Diphenylphosphinyloxy)-1,1,3,3-tetramethyl-2,3-dihydro-1 H-isoindole (34.3\%), identical to an authentic sample (Busfield et al., 1995).
(6) The material, 1,1,3,3-tetramethyl-2,3-dihydro-1H-isoindol-2yloxy diphenylphosphinite (12%), was unstable, decomposing almost immediately in warmed aqueous THF to give by HPLC the free radical scavenger and diphenylphosphine oxide. High resolution MS failed to give a parent ion and the material was too unstable for elemental analysis. However, the following spectroscopic data were obtained: ${ }^{1} \mathrm{H}$ NMR $\delta\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36$, br $s, 12 \mathrm{H}, 4 \mathrm{CH}_{3} ; 7.18-$ $7.30, m, 8 \mathrm{H}, \mathrm{H} 4-\mathrm{H} 7,4 \mathrm{H}$-phenyl; 7.47, $m, 6 \mathrm{H}$, Phenyl; ${ }^{13} \mathrm{C}$ NMR δ ($62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $29.9,30.0, d, 4 \times$ ring $\mathrm{CH}_{3} ; 120.0, \mathrm{C} 4, \mathrm{C} 7 ; 128.1, d$, ${ }^{3} J_{\mathrm{P}, \mathrm{C}} 6.97$, meta C; 128.6, s, para C; 130.0, $d,{ }^{2} J_{\mathrm{P}, \mathrm{C}} 22.1$, ortho C; 143.7, 144.0, C3a, C7a. ${ }^{31} \mathrm{P}$ NMR $\delta\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 86.90 . \mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 5$ and C6 from the isoindole moiety and the two ipso C atoms of the phenyl rings were not detected in the ${ }^{13} \mathrm{C}$ NMR spectrum. Percentage yields are based on moles of diphenylphosphine.

Sosnovsky \& Zaret (1969) prepared the title compound by reacting diphenylchlorophosphine with tert-butyl hydroperoxide in pyridine. Another synthesis was reported by Sosnovsky et al. (1970).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P} \\
& M_{r}=274.28 \\
& \text { Orthorhombic, } P b c a \\
& a=11.530(2) \AA \\
& b=17.118(2) \AA \\
& c=15.285(2) \AA \\
& V=3016.8(7) \AA^{3} \\
& Z=8 \\
& D_{x}=1.208 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.954, T_{\text {max }}=0.979$
2631 measured reflections
2631 independent reflections

Refinement

Refinement on F^{2}
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.142$
$S=0.90$
2631 reflections
173 parameters
H-atom parameters constrained

802 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 20$
$l=0 \rightarrow 18$
25 standard reflections frequency: 120 min
intensity decay: 1%
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0552 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\max }=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0030 (4)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{P} 1-\mathrm{O} 1$	$1.476(3)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.569(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	$118.00(18)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 11$	$112.3(2)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 21$	$113.3(2)$	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{C} 11$	$106.40(19)$
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{C} 21$	$99.7(2)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 11$	$105.7(2)$

The crystal selected was a poor diffractor and only 30% of the intensities were significantly greater than background. H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SDP (Frenz, 1985); cell refinement: SDP; data reduction: $\operatorname{Win} G X$ (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 1988); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Australian Research Council, the University of Queensland and Griffith University for financial support for the purchase of the CAD-4 diffractometer.

References

Albanese, D., Landini, D. \& Maia, A. (2001). J. Org. Chem. 66, 3249-3252.
Bottle, S., Busfield, W. K., Grice, I. D., Heiland, K., Jenkins, I. D., Meutermans, W. \& Monteiro, M. (1994). Prog. Pac. Polym. Sci. 48, 85-97.

Busfield, W. K., Grice, I. D., \& Jenkins, I. D. (1995). Aust. J. Chem. 48, 625-634.
Edmundson, R. S., (Ed) (1986). In Dictionary of Organophosphorus Compounds. London: Chapman and Hall.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
Sosnovsky, G. \& Zaret, E. H. (1969). J. Org. Chem. 34, 968-970.
Sosnovsky, G., Zaret, E. H. \& Schmitt, K. D. (1970). J. Org. Chem. 35, 336-340.

